IIDENTIFYING CLINICAL AND BIOCHEMICAL PREDICTORS OF PROGRESSION OF DIABETIC KIDNEY DISEASE 2000 WORDS
IIDENTIFYING CLINICAL AND BIOCHEMICAL PREDICTORS OF PROGRESSION OF DIABETIC KIDNEY DISEASE 2000 WORDS
IIDENTIFYING CLINICAL AND BIOCHEMICAL PREDICTORS OF PROGRESSION OF DIABETIC KIDNEY DISEASE
2000 WORDS
Despite the convenience of quick estimates, the eGFR does come with its limitations as a biomarker for the diagnosis of diabetic kidney disease. Serum creatinine levels can be influenced by muscle mass and diet, especially meat intake [12] which would therefore have an effect on the eGFR calculation.
Inaccuracies may also arise from the equation in certain circumstances. In patients with a GFR > 60 mL/min per 1.73 m2, the MDRD equation becomes less accurate [13]. As glomerular hyperfiltration is a sign of an early stage disease, this would cause a problem in the early diagnosis of diabetic kidney disease. Conversely, the CKD-EPI equation is more reliable for patients with a GFR > 90 mL/min per 1.73 m2 [14]. This would therefore be a more accurate equation to use with diabetic patients – why?
The P30 value of both equations is between 80% and 90% which means the eGFR calculations from the equations have a 80-90% chance of being within 30% of the GFR. (add some other stuff to transition to conclusion)
Therefore eGFR alone should not be used a sole marker for diagnosis of diabetic kidney disease.
Despite the convenience of quick estimates, the eGFR does come with its limitations as a biomarker for the diagnosis of diabetic kidney disease. Serum creatinine levels can be influenced by muscle mass and diet, especially meat intake [12] which would therefore have an effect on the eGFR calculation.
Inaccuracies may also arise from the equation in certain circumstances. In patients with a GFR > 60 mL/min per 1.73 m2, the MDRD equation becomes less accurate [13]. As glomerular hyperfiltration is a sign of an early stage disease, this would cause a problem in the early diagnosis of diabetic kidney disease. Conversely, the CKD-EPI equation is more reliable for patients with a GFR > 90 mL/min per 1.73 m2 [14]. This would therefore be a more accurate equation to use with diabetic patients – why?
The P30 value of both equations is between 80% and 90% which means the eGFR calculations from the equations have a 80-90% chance of being within 30% of the GFR. (add some other stuff to transition to conclusion)
Therefore eGFR alone should not be used a sole marker for diagnosis of diabetic kidney disease.